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Symmetry properties in polarimetric remote sensing 
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This paper presents the relations among polarimetric backscattering coefficients from the 
viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due 
to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal 
and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear 
polarization basis, the scattering coefficients are related by a set of equations which restrict the 
number of independent parameters in the polarimetric covariance matrix. The properties derived 
under these transformations are general and apply to all scattering mechanisms in a given 
symmetrical configuration. The scattering coefficients calculated from theoretical models for layer 
random media and rough surfaces are shown to obey the derived symmetry relations. Use of 
symmetry properties in remote sensing of structural and environmental responses of scattering media 
is discussed. As a practical application, the results from this paper provide new methods for the 
external calibration of polarimetric radars without the deployment of man-made calibration targets. 

1. INTRODUCTION 

In geophysical remote sensing, the encountered 
media usually possess symmetry properties. For 
instance, the ocean exhibits symmetry about the 
downwind or upwind direction [Stewart, 1985]. 
Multiyear sea ice has embedded air bubbles and a 
hummocky topography [Weeks and Ackley, 1982] 
which do not show any azimuthal preference. The 
canopy layer of a natural forest consists of leaves, 
twigs, and branches randomly oriented in azimuthal 
directions [Kimes et al., 1979]. Polarimetric remote 
sensing data have been collected extensively, and 
theoretical models have been developed intensively 
for understanding the responses of these geophysi- 
cal media. It is therefore useful to investigate the 
symmetry properties of these media for applications 
in both theoretical and practical problems. 

Polarimetric backscattering properties of the me- 
dia can be described completely with a set of 
scattering coefficients in the covariance matrix 
[Nghiem et al., 1990]. From the symmetry of the 
media, some restrictions on the scattering coeffi- 
cients have been recognized. Up to the second- 
order Born approximation it has been shown that 
the scattering coefficients, which correspond to the 
correlation between the copolarized and cross-po- 
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larized elements of the scattering matrix, are zero 
for volume scattering from layer random media 
containing spherical scatterers [Borgeaud et al., 
1987]. The same result has been obtained for scat- 
tering from inhomogeneous layer media consisting 
of nonspherical scatterers with random azimuthal 
orientations under the first-order distorted Born 

approximation [Nghiem, 1991]. These zero-scatter- 
ing coefficients have been assumed to extract equa- 
tions relating true and measured quantities for use 
in the calibration of polarimetric scattering data 
[Yueh et al., 1991; van Zyl, 1990; Sheen et al., 1989] 
and to study the unpolarized component of the 
scattering from a forested area [Durden et al., 
1990]. 

Generally, the question is how symmetries of the 
media manifest themselves in the polarimetric back- 
scattering coefficients. Specifically, is it possible to 
prove that the scattering coefficients, which corre- 
late the copolarized and cross-polarized elements in 
the scattering matrix of a symmetrical medium, are 
zero without any restriction to the mathematical 
orders of scattering or the scattering mechanisms 
themselves? Is the azimuthal symmetry an overre- 
quirement for those scattering coefficients to be 
zero? Furthermore, is it possible to derive new 
relationships between the scattering coefficients 
from the symmetry properties? As a systematic 
approach, symmetry groups are considered. Sym- 
metries have been defined and mathematically for- 
mulated in group theory and applied to various 
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fields of physics [Hamermesh, 1972]. The symme- 
try of a body is described by a set of transforma- 
tions which preserve distances. These transforma- 
tions can be constructed from three fundamental 

operations: mirror reflection, axial rotation, and 
linear translation. The translational invariance of 

the covariance matrix, implied in the subsequent 
development in this paper, in the horizontal direc- 
tion is usually observed for a geophysical medium 
whose scattering matrix is statistically homoge- 
neous within the distributed extent. More interest- 

ingly, the reflection, the rotation, and their combi- 
nations constitute symmetry groups applicable to 
geophysical remote sensing of media with reflec- 
tion, rotation, azimuthal, and centrical symmetries. 

In this paper the invariance of backscattering 
coefficients in the covariance matrix under the 

symmetry transformations of the linear polarization 
basis is used to investigate the conditions imposed 
by the aforementioned symmetries for both recip- 
rocal and nonreciprocal media. The paper is orga- 
nized into eight sections. In section 2 the rotation of 
scattering coefficients in a linear polarization basis 
is carried out. Section 3 considers mirror reflection 

symmetry about a plane to generally prove the 
complete decorrelation between the copolarized 
and the cross-polarized scattering elements result- 
ing in the corresponding zero cross-scattering coef- 
ficients. In this case, theoretical results for scatter- 
ing from a random medium with aligned spheroidal 
scatterers and from a randomly perturbed periodic 
rough surface are shown to satisfy this symmetry 
condition. Section 4 studies the consequence of 
two-dimensional pure rotation symmetry about an 
axis on the polarimetric scattering coefficients. Be- 
cause of this rotation invariance the scattering co- 
efficients are constrained under a new set of equa- 
tions which hold true even for gyrotropic and chiral 
media. Section 5 analyzes the implications of azi- 
muthal symmetry. This symmetry group is obtained 
from the rotation group by adjoining the reflection 
in the vertical plane containing the axis of the 
rotation symmetry. The azimuthal symmetry inter- 
relates the scattering coefficients with a set of 
equations which are used to test the volume scat- 
tering from layer random media under the first- 
order distorted Born approximation and the rough 
surface scattering under the first-order small pertur- 
bation method. Section 6 examines centrical sym- 
metry about a point. This symmetry can be consid- 
ered as azimuthal symmetry with the axis 

containing the center point and rotated in three 
dimensions. Theoretical calculations of volume 

scattering under the first-order distorted Born ap- 
proximation for a layer of randomly oriented sphe- 
roidal scatterers and surface scattering under the 
geometrical optics approximation for a rough inter- 
face are shown to abide by the constraints from 
centrical symmetry. Section 7 discusses the use of 
symmetry properties in polarimetric remote sensing 
of medium structures and environmental effects and 

suggests new methods for the calibration of polari- 
metric radars. Finally, the paper is summarized in 
section 8. 

2. SCATTERING COEFFICIENTS 

In this section the scattering coefficients in a 
rotated linear polarization basis are calculated in 
terms of those in the original basis. Consider an 
electric field E-i = (l•Ehi + bEvi) incident on a 
scattering medium giving rise to the scattered field 
E-s = (]•Ehs + •SEvs), where h represents the hori- 
zontal polarization and v represents the vertical 
polarization. The scattered field is related to the 
incident field by a scattering matrix F defined as 
[Nghiem et al., 1990] 

e ikr e ikr [fhh fhv 
t' [fvh fvv 

(1) 

where factor eikr/r is the spherical wave transfor- 
mation, scattering element f• consists of scattered 
polarization /x and incident polarization v with /x 
and v being of h or v, and the incident basis has been 
applied to both incident and scattered fields. 

The elements of the scattering matrix can be used 
to find the backscattering coefficients determined 
by 

4,rr 2 * 
o'•.•,, = lira , (2) 

A EriE•i 

where subscripts/x, •,, r, and g can be h or v and A 
is the illuminated area. The scattered fields in (2) are 
obtained by measuring h and v returns, while the 
incident field is transmitted exclusively with h or v 
polarization. As seen from (1), this measurement 
procedure is mathematically described by the fol- 
lowing equations: 
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Fig. 1. Rotation of the linear polarization basis by angle a. 

e ikr e ikr 
E•s = • (f•.E•.i + f•,,E,,i)ltr,,, =0 = • f•.E•.i (3a) 

e ikr e ikr 
E•,s = (f•,•.E•.i + f•,,•E,•i)lE,,=o =•f•,,,E,•i (3b) 

Introducing (3) in (2) renders the polarimetric back- 
scattering coefficient %,• in terms of the scattering 
matrix elements' 

tr •.• = lim • (f•.f*•) (4) 
A-->oo A 

Since there are four elements in the scattering 
matrix, the full covariance matrix is a four-by-four 
matrix composed of 16 scattering coefficients 

'O'hhhh O'hhhv O'hhv h O'hhvv ] 
ø'hvhh ø'hvhv ø'hwh ø'hvvv I 
O'vhhh O'vhhv O'vhvh O'vhw I 
O'vvhh O'vvhv O'vw h O'vvvv J 

'O'hhhh O'hhhv O'hhvh O'hhw ] 
_ O'hhhv O'hvhv O'hwh O'hvvvl 

O' hhvh O' hvvh O' vhvh O'vhvv I 
O' hhvv O' hvvv O' vhvv O'vvvv J 

(5) 

In this covariance matrix the four diagonal elements 
O'hhhh , O'hvhv , O'vhvh , and •rvv w are the conventional 
backscattering coefficients O'hh , O'hv , O'vh , and •r w, 
respectively, which are real quantities. In general, 
the off-diagonal elements are complex. Thus the 
covariance matrix contains at most 16 independent 
parameters. 

Let h rotate to ti' and 0 to b' by an angle a around 
the incident direction • in the counterclockwise 
sense, as shown in Figure 1. The rotated polariza- 
tion vectors /i' and 0' are related to the original 
vectors as 

L-sin a cos a 
(6) 

To obtain the elements of the scattering matrix in 
the rotated linear basis, the measurement procedure 
(3) is utilized to obtain 

e ikr e ikr 
E•s la' T ' F' ^' ' = ' ' = • ^ 'r E•. i •fl•.E•.i 

F F 

-• f•, =/2' T . F' •" (7) 

where 3- denotes the transpose and fx' or ¾ can be 
/•' or b'. Explicitly, the elements of the new scat- 
tering matrix written as a function of the rotation 
angle a are 

f•h = COS . (fhh COS . + fhv sin a) 

+ sin ot (fvh COS O• q-fw sin a) (8a) 

f•v = COS ot (--fhh sin ot + fhv COS a) 

+ sin ot (--fvh sin a + fvv cos a) (8b) 

f•.h -- -sin ot (fhh COS . +fhv sin a) 

COS O• (fvh COS O• q-fvv sin a) (8c) 

f•v = -sin ot (--fhh sin ot + fhv cos a) 

+ COS a --fvh sin ot + fvv cos a) (8d) 

Substituting (8) in (4) yields the scattering coeffi- 
cients in the rotated linear polarization basis as 
linear combinations of the original scattering coef- 
ficients. The complete set of the elements in the 
new covariance matrix are shown in the appendix. 

The four-by-four covariance matrix describes the 
polarimetric backscattering properties of both re- 
ciprocal and nonreciprocal media. For reciprocal 
media the reciprocity relation fhv = fvh reduces the 
covariance matrix to a three-by-three matrix 
[Nghiem et al., 1990] 

C • 

O'hhhh O'hhhv O'hhvv 

o' hhhv o' hvhv o' hvvv 

o' hhw O' hvvv O'vvvv 

-'0' 1 fi(e) 1/2 /3*(e) 1/2 e 

[p.(.y) 1/2 •*(7e) 1/2 
(9) 
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wind direction 

Plane P 

Fig. 2. Reflection symmetry of water waves about a vertical 
plane (P) parallel to the downwind or upwind direction. 

where the normalizing factor is rr = rrhhhh and the 
intensity ratios 3' and e and the correlation coeffi- 
cients p,/3, and s • are defined as 

O'vvvv O'hvhv 
3/= •, e = (10a) 

O'hhvv O'hhhv O'hvvv 

/9 -- O'('y)1/2' • or(e) 1/2' g = Cr(,/e)1/2 (10b) 
It is also observed from (8b) and (8 c) that fhv ----fvh 
implies f•v = f•h. The reciprocity relation is there- 
fore invariant under the rotation of the linear polar- 
ization basis. The results in this section are used in 

the subsequent sections to analyze the effects of 
symmetry properties on polarimetric backscattering 
coefficients. 

3. REFLECTION SYMMETRY 

In this section the reflection symmetry with re- 
spect to a vertical plane is considered in order to 
find the constraints on the scattering coefficients. 
This symmetry group has the mirror reflection 
transformation denoted by rr v, where the subscript 
v stands for vertical (not to be confused with the 
conventional scattering coefficient rrvv = rrvvvv) in 
the notation of group theory [Hamermesh, 1972]. 
On the ocean surface, for instance, water waves 
have the reflection symmetry about a vertical plane 
(P) parallel to the downwind or upwind direction as 
depicted in Figure 2. Here theoretical results for the 
scattering from a random medium with aligned 
ellipsoidal scatterers and from a randomly per- 
turbed periodic rough surface will be shown to obey 
the constraints imposed by reflection symmetry. 

Let the linear polarization basis (/i, •) be oriented 
such that /i 3_ P and b IIP. Then, the reflection 
symmetry requires that the measurements made by 
transmitting v or h and receiving v in the linear 
polarization basis rotated by a + (rd2) to be the 
same as the measurements made by transmitting h 
or v and receiving h in the basis rotated by -a as 
illustrated in Figure 3. This signifies 

O';vvh(Ot q- 7r/2)= O'•hhv(--ot ) (11) 

Written in terms of angle a, the expressions for 
O"vvvh(Ot + •r/2) = '* O'vhvv(Ot + •r/2) from (A9) in the 
appendix and rr•hhv(--ot ) from (A2) are 

^ 

Transmit h [ •r 
+¾ 

Transmit v 
Measure v 

Transmit v 

Transmit h 
Measure h 

Plane P Plane P 

Fig. 3. Reflection symmetry in the measurements made by transmitting v or h and receiving v in the linear polarization 
basis rotated by a + (rd2) and by transmitting h or v and receiving h in the basis rotated by -a. 
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Crvhvv ot + -- Crhhhh ½0S 3 cr sin a 

ß 2 ß 2 '4- O'hhhv gOS c• sin 2 cr + O'hhvh gOS c• sin 2 

q- O'hhvv COS Cr sin 3 cr- O'hhhv COS 4 cr 

-- Crhvhv COS 3 cr sin hvvh C0S3 

* 2 -- Crhvvv COS cr sin 2 cr + Crhhvh COS 2 cr sin 2 cr 

+ Crhvvh sin 3 a cos a + Crvhvh COS c• sin 3 a 

+ Crvhvv sin 4 cr- Crhh w COS 3 cr sin a 

-- rrhvvv COS 2 Cr sin 2 cr- rrvhvv COS 2 Cr sin 2 cr 

-Crvvvv sin 3 a cos a (12a) 

O'hhhv(--o• ) -' O'hhhh COS 3 c• sin a + O'hhhv COS 4 c• 

-- Crhhvh COS 2 cr sin 2 cr- Crhhvv COS 3 cr sin a 
ß 2 + O'hhhv COS c• sin 2 a - O'hvhv COS 3 c• sin a 

+ O'hvvh COS c• sin 3 a + O'hvvv COS 2 C• sin 2 a 
ß 2 ß -- O'hhvh COS c• sin 2 a - O'hvvh COS 3 c• sin a 

+ O'vhvh COS c• sin 3 a + O'vhvv COS 2 C• sin 2 a 

ß ß 2 + O'hhvv COS c• sin 3 a + O'hvvv COS c• sin 2 a 

-- Crvhvv sin 4 a - Crvvvv cos a sin 3 a (12b) 

Equating (12a) and (12b) in accordance with (11) 
enforces the following conditions on the real part 
(Re) and the imaginary part (Im) of the scattering 
coefficients: 

2(Re Crvnvv + Re •rnvvv -Re O'hhhv 

- Re rrhhvh) sin 2 a cos 2 a n t- Re rrhhhv COS 2 a 

- Re rrvhvv sin 2 a = 0 (13a) 

Im rrhhhv COS 2 a n t- Im Crvhvv sin 2 a = 0 (13b) 

for any arbitrary angle a; therefore the coefficients 
of the trigonometric functions have to vanish simul- 
taneously. Consequently, the involved scattering 
coefficients corresponding to the correlations be- 
tween copolarized and cross-polarized elements in 
the scattering matrix are subject to the following 
constraints: 

Re O'hhhv -- Re O'vhvv --0 and Re rrhhvh = Re rrhvvv 

(14a) 

Im O'hhhv = Im O'vhvv = 0 (14b) 

Similarly, transmitting v and receiving v and h in 
the linear polarization basis rotated by a + (•r/2) 
provide the same values for the scattering coeffi- 
cients of the medium with the reflection symmetry 
as measured by transmitting h and receiving h and v 
in the basis rotated by -a. Described mathemati- 
cally, this condition is 

, (;) O'vvhv Ot q- -- O'•hvh (-- Ot ) (15) 

which requires from (A7) for '* O'hvvv(a + rd2) = 
O'[vhv(a + rd2) and (A3) for rr•hvh(--ot ) that the real 
and the imaginary parts of the scattering coefficients 
to satisfy the following constraints: 

2(Re rrhvvv q- Re rrvhvv -- Re rrhhvh 

-- Re rrhhhv) sin2 a cos2 a q- Re rrhhvh COS2 a 

-Re rrhvvv sin 2 a = 0 (16a) 

Im rrhhvh COS 2 a n t- Im rrhvvv sin 2 a = 0 (16b) 

Since a is arbitrary, all the coefficients in (16) have 
to be zero leading to the following conditions' 

Re O'hhvh -- Re O'hvvv --0 Re O'hhhv -- Re O'vhvv (17a) 

Im O'hhvh = Im O'hvvv -' 0 (17b) 

In summary, the reflection symmetry equalizes 
the scattering coefficients measured in two linear 
polarization bases with the mirror symmetry about 
the vertical plane P. This symmetry forces the 
polarimetric scattering coefficients for the correla- 
tions between the copolarized and the cross-polar- 
ized elements in the scattering matrix to be nulli- 
fied. As seen from (14) and (17), 

O'hhhv -- O'hvhh -- O'vvvh -- O'vhvv -- 0 (18a) 

O'hhvh -- O'vhhh -- O'vvhv -- O'hvvv -- 0 (18b) 

Use of other equations in the appendix leads to the 
same conclusion. The covariance matrix character- 

izing the polarimetric backscattering of a medium 
with reflection symmetry becomes 
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C _._ 

o o (a) 
0 O'hvhv O'hvvh 0 
0 * (19) ß ff hwh ffvhvh 0 O0 i 

tr hhvv 0 0 tr vvvv 
•0, la 

which has at most eight independent parameters. 
Note that (19) holds for both reciprocal and nonre- 
ciprocal medium. If the rotationally invariant reci- 
procity relation is imposed, then fi = • = 0 for e • 
0 and the covariance matrix of the reciprocal me- 
dium with the reflection symmetry contains at most 
five independent parameters. This covariance ma- 
trix reduces to 

C • 

o'aaaa 0 o'aa• 1 0 p( y) 1/2 
0 O'avav 0 = o- 0 e 0 

o- aavv 0 O'vvvv p,(•/) •n 0 •/ 

(20) 

The covariance matrices (19) and (20) with the zero 
elements are derived based on the reflection sym- 
metry without any reference to scattering mecha- 
nisms. This result is thus valid for volume scatter- 

ing, surface scattering, or volume-surface inter- 
actions to all scattering orders or to the total scat- 
tering effects no matter how dense the medium or 
how rough the surface is as long as the scattering 
configuration has the reflection symmetry. 

As shown here, reflection symmetry requires the 
complete decorrelations between the copolarized 
and cross-polarized scattering elements. This re- 
quirements has to be observed by results from 
theoretical models for the symmetrical media as a 
matter of self-consistency. In this sense, models for 
volume and surface scatterings from a medium with 
the reflection symmetry are investigated. For the 
volume scattering model [Nghiern et al., 1990], 
consider an anisotropic layer of random medium 
consisting of a host medium with permittivity % = 
(3.2 + i0.002)e0 and a fractional volume fs = 5% of 
prolate spheroidal scatterers with permittivity es = 
(42.0 +i45.0)e0. The scatterers are described by an 
exponential correlation function with correlation 
lengths lp, = 0.3 mm and I z, = 1.0 mm aligned in a 
direction parallel to the y-z plane and tilted by an 
angle $ = 20 ø from the vertical axis. The scattering 
configuration is shown in Figure 4a, where the 
upper half-space is the air with permittivity e0, the 
middle layer is the tilted anisotropic random me- 

1'-5 GHz 

%II•,' = (3.57 + i 0.043} •o 
%lit' = (4.47 + i 0.524} •o 
g•,, -- .3 mm g,, -- 1.0 mm 

• - (60.0 + i 4o.o) •o, • 

z--Om 

z- -2.0 rn 

-15 

(b) Incident Angle = 45 dog 
-20 Tilted Angle ¾ = 20 dog 

-25 •/•t -30 • • 

-35 

-40 

0 90 180 2•0 360 

Azimuthal Angle ½o• (degrees) 

Fig. 4. (a) Scattering configuration for a layer of tilted 
anisotropic random a medium. (b) Scattering coefficients trhhnv 
and trn•,v plotted as a function of azimuthal angle •b0i. 

dium of 2.0-m thick with permittivity tensor eeff = 
diag [eeffp', eeffp' = (3.57 + i0.043)e0, eeffz' = (4.47 + 
i0.524)eo] obtained from the strong permittivity 
fluctuation theory (SFT), and the lower half-space 
is an isotropic homogeneous medium with permit- 
tivity e• = (60.0 + i40.0)e0. Identical permeability/z 
is assumed for the media. This scattering configura- 
tion has reflection symmetry about a vertical plane 
parallel to the tilted axis of the scatterers. It should 
bc pointed out that the configuration does not 
coincide with itself after a rotation by 180 ø about 
any vertical axis. A 5-GHz wave is incident on the 
layer random medium in the direction koi deter- 
mined by incident angle Ooi = 45 ø from the vertical 
axis • and azimuthal angle •b0i from the horizontal 
axis •. The scattering coefficients •rnnnv and O'nvvv 
are calculated under the first-order distorted Born 

approximation and plotted in Figure 4b as a func- 
tion of azimuthal angle •b0i. The plots show that 
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rrhhhv and •rhvvv have reflection symmetry about •0i 
- 90 ø and •b0i = 270 ø, while their values are different 
as •b0i is rotated by 180 ø. When •b0i goes to 90 ø or 
270 ø, where the scattering configuration has the 
reflection symmetry, rrhhhv and rrhvvv become zero 
as required by the symmetry. 

For the surface model the scattering from a 
randomly perturbed periodic surface is formulated 
by the extended boundary condition method and 
solved by the perturbation method [Yueh et al., 
1989]. The configuration is shown in Figure 5a 
where the large-scale periodic surface is a one- 
dimensional sinusoidal surface and the random per- 
turbation is a two-dimensional Gaussian random 

process X described by a Gaussian correlation func- 
tion with a correlation length I and a standard 
deviation •r. This scattering configuration has re- 
flection symmetry about a vertical plane parallel or 
perpendicular to the row direction and also coin- 
cides with itself after a rotation by 180 ø around a 
vertical axis. The conventional backscattering co- 
efficients rrhh, rrvv, and rrhv versus the azimuthal 
angle •bi for a fixed incident angle Oi = 45 ø are 
graphed in Figure 5b, which reveals the reflection 
symmetry and the periodicity of 180 ø in •bi as 
expected. The kinks observed on the •rhvhv curve 
are due to the relatively abrupt variation of energy 
distribution between surface and propagating Flo- 
quet modes. Figure $c illustrates the results for the 
magnitudes of scattering coefficients O'hhhv and 
O'hvvv which are zero when •i -- 0ø, 90ø, 180ø, and 
270 ø, corresponding to the symmetry directions of 
the surface. 

The models for the volume scattering and the 
surface scattering with the symmetrical configura- 
tions are thus shown to follow the constraints 

imposed by the reflection symmetry. In geophysical 
media this symmetry can be observed on water 
surfaces in the upwind or downwind direction, 
plowed fields in the direction perpendicular to the 
row structure, and isotropic and anisotropic scat- 
tering media such as forest, snow, or sea ice. 

, 

4. ROTATION SYMMETRY 

In this section the pure rotation symmetry in the 
two-dimensional linear polarization basis is investi- 
gated for the characteristics of the scattering coef- 
ficients from a medium with such symmetry. In this 
group the transformations are labeled by the con- 
tinuous rotation angle a and denoted by q•o• accord- 

z 

I_ 

f(x,y)=Hcos(•)+Z(x,y) 

0 

-40 

-60 
90 180 270 

Azimuthal Angle ½• (degrees) 

360 

-2O 

-BO 
0 

(c) 

hhhv 

hvvv 

90 180 270 360 

Azimuthal Angle •1 (degrees) 
Fig. 5. (a) Configuration for a randomly perturbed periodic 

surface. (b) Conventional backscattering coefficients rrhh, 
and rrhv plotted as a function of azimuthal angle •bi at Oi = 45 ø for 
• = 6.0 + i0.6, P = 100 cm, H = 10 cm, correlation length I = 10 
cm, standard deviation rr = 1 cm, and frequencyf = 1.4 GHz. (c) 
Plots of O'hhhv and rrhvvv versus azimuthal angle qb i with the same 
physical parameters. 

ing to group theory notation [Hamermesh, 1972]. 
For a medium with the rotation symmetry the 
covariance matrix is invariant under the rotation 

about an axis L by the angle a as illustrated in 
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L 

Fig. 6. Rotation symmetry about axis L where the linear 
polarization basis is (/•, b) with/• _t_ L and b _t_ L. 

Figure 6. This invariance is used to derive the 
relations among the polarimetric backscattering co- 
efficients of the medium restricted by the rotation 
symmetry. 

For a wave propagating in parallel to the axis of 
symmetry (L), both the horizontal h and the vertical 
b polarization vectors are perpendicular to axis L. 
After a rotation by an angle a the covariance matrix 
remains unchanged; therefore rr•rK = •wK(a). 
From rrhhhh = O'•hhhh and (A1) in the appendix, the 
following results 

( O'vvvv -- O'hhhh ) sin 2 a + ( O'hvhv q- O'vhvh q- 2O'hvvh 

- •rnnnn - •r•vv + 2 Re •rnnvv) cos 2 a sin 2 a 

+ (Re •rnnnv + Re •rnnvn)2 cos 3 a sin a 

+ (Re •rn• v + Re •rvnvv)2 cos a sin 3 a = 0 (21) 

hold for any arbitrary angle a. To satisfy (21), the 
quantities in the parentheses have to vanish simul- 
taneously. The involved scattering coefficients are 
thus related by 

O' hhhh = O'vvvv (22a) 

O'hvhv q- O'vhvh q- 2 Re O'hvvh = O'hhhh 

+ rrvvvv -2 Re O'hhvv (22b) 

Re O'hhhv q- Re O'hhvh = Re O'hvvv q- Re O'vhvv --0 (22c) 

Similarly, rrhhhv is equal to rr•hhv(Ot ) given by (A2) in 
the appendix. Taking the real part of the resultant 
equation gives 

(O'hvhv q- O'vhvh q- 2 Re O'hvvh -- O'hhhh -- O'vvvv 

+ 2 Re O'hhvv)(COS 30t sin a --COS a sin 3 a) 

- (Re O'hhhv q- Re O'hhvh -- Re O'hvvv -- Re rrvhvv)4 

ß COS 2 a sin 2 a - (O'hhhh -- O'wv v -- O'hvhv q- O'vhvh ) 

ß cos a sin a -(Re O'hhhv q- Re rrvhvv)2 sin 2 a = 0 

(23) 

which introduces the following relations, in addition 
to (22b) and (22c), on the scattering coefficients 

O'hhhh -- O'vvvv = O'hvhv -- O'vhvh (24a) 

Re O'hhhv = -Re O'vhvv (24b) 

Furthermore, equating the imaginary part of rrhhhv 
to that of rr•thhv(Ot) yields 

(Im O'hhvv -- Im O'hvvh ) COS a sin a 

-(Im O'hhhv -- Im O'vhvv ) sin 2 a = 0 (25) 

in which the coefficients of the trigonometric func- 
tions have to be zero for (25) to hold true for an 
arbitiary a. Consequently, 

Im rrhhvv = Im rrhwh (26a) 

Im rrhhhv = Im rrvhvv (26b) 

Next, using rrhhvh = O'•hhvh(Ot) with (A3) from the 
appendix and examining the real part and the imag- 
inary part lead to 

(O'hvhv q- O'vhvh q- 2 Re O'hvvh -- O'hhhh -- O'vv w 

+ 2 Re O'hhvv)(COS 30t sin a --COS a sin 3 a) 

- (Re O'hhhv q- Re O'hhvh -- Re O'hvvv -- Re rrvhvv)4 

ß ½OS 2 a sin 2 ot- (O'hhhh -- O'vvvv q- O'hvhv -- O'vhvh ) 

ß cos a sin a -(Re O'hhvh q- Re rrhvvv)2 sin 2 a=0 

(27a) 

(Im O'hhvv q- Im O'hvvh ) COS a sin a 

- (Im O'hhvh -- Im O'hvvv ) sin 2 a = 0 (27b) 

respectively, which further impose the following 
conditions on the scattering coefficients: 

O'hhhh -- O'vvvv = O'vhvh -- O'hvhv (28a) 
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Re •rhh•,h = -Re O'hvvv (28b) 

Im O' hh w ---- -Im O'hw h (29a) 

Im •rhhvh = Im •rhvvv (29b) 

Also, inspecting the real part of the relation O'hhvv ---- 
O•hhw(a) for the scattering coefficient correlating the 
two diagonal elements in the scattering matrix re- 
sults in 

(O'hvhv + O'vhvh + 2 Re O'hw h -- O'hhhh -- O'vvvv 

+ 2 Re •rhhw) cos 2 a sin 2 a 

- (Re O'hhhv q- Re O'hhvh -- Re O'hvvv -- Re O•vhw) 

ß (cos a sin 3 a -cos 3 a sin a)= 0 (3On) 

where (A4) in the appendix has been used. No new 
information is obtained from (30a); however, the 
imaginary part gives 

Im O'hhw2 sin 2 a q- (Im O'hhhv q- Im O•hh•,h 

- Im O'hvvv -- Im •r•h•o) cos a sin a = 0 (30b) 

which requires that the relevant scattering coeffi- 
cients satisfy the following conditions: 

Im •rhh•o = 0 (31a) 

Im O'hhhv q- Im O'hhvh m Im O'hvvv q- Im •%h•o (3lb) 

Finally, the relation O'hvhv ---- •hvhv for the cross- 
polarized return is used with (A5) from the appen- 
dix to arrive at 

(O'hvhv + O'vhvh + 2 Re O'hw h -- O'hhhh -- O'vvvv 

+ 2 Re O'hhw) cos 2 a sin 2 a 

+ (Re O•nhhv -- Re O•hvvv)2 COS 3 a sin a 

- (Re O'hhvh -- Re O•vhw)2 cos a sin 3 a 

q- (O'hvhv -- O'vhvh ) sin 2 a = 0 (32) 

which equates the cross-polarized returns O'hvhv and 
O'vhvh and also the real parts of the off-diagonal scat- 

tering coefficients corresponding to the correlations 
between the copolarized and the cross-polarized ele- 
ments in the scattering matrix as described by 

O. hvhv m O. vhvh (33a) 

Re O•nhhv = Re O'hvvv (33b) 

Re O'hhvh = Re •r•h•o (33c) 

As derived, the rotation symmetry enforces the 
conditions in (22), (24), (26), (28), (29), (31), and (33) 
on the polarimetric backscattering coefficients due 
to their invariance under the rotation of the linear 

polarization basis. The results have been obtained 
by using (A1)-(A5) from the appendix for the ro- 
tated scattering coefficients; the same conclusions 
are reached by use of other equations in the appen- 
dix. In summary, the scattering coefficients of a 
medium with rotation symmetry possess the follow- 
ing characteristics: 

Re O•nhhv = -Re O•vhw = Re O'hvvv (34a) 

Im •rnhh• = Im •rvh•o (34b) 

Re O•hhvh = -Re O'hvvv -- Re O•vhw (35a) 

Im •rhh•h = Im O'hvvv (35b) 

Im O'hh• = 0 (36a) 

Im O'hw h = 0 (36b) 

'hhhh = (37a) 

O'hvhv m O. vhvh (37b) 

O'hvhv q- O'vhvh q- 2 Re O'hw h 

m O-hhhh q- O-vvvv -- 2 Re O•hhw (38) 

These conditions reduce the number of independent 
parameters in the four-by-four ½ovariance matrix 
for backscattering from 16 to 6 at most. The corre- 
sponding covariance matrix can be expressed as 

O'hhhh Re •rnhhv + i Im O'hhhv -Re O'hhhv q- i Im O'hhvh Re O'hhw 
Re O'hhhv -- i Im O'hhhv O'hvhv Re O'hw h Re O'hhhv q- i Im O'hhvh 

C = -Re O'hhhv -- i Im O'hh•,h Re O'hw h O'hvhv -Re O'hhhv + i Im O'hhhv 
Re O'hh w Re O'hhhv -- i Im O'hhvh -Re O'hhhv -- i Im O•hhhv O•hhhn 

(39) 
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where rrhhhh , rrhvhv, and Re rrhvhv are related by 
rrhvhv -I- Re rrhvvh = rrhhhh -- Re rrhhvv. It is also 
interesting to note that (34), (35), and (38) can be 
rewritten as 

Re O'hhhv q-Re O'hhvh Re trh•ov + Re trvhvv 
= = 0 (40a) 

2 2 

Im O'hhhv q- Im O'hhvh Im O'hw v q- Im O'vh w 

2 2 
(40b) 

O'hvhv + O'vhvh + 2 Re O'hw h 

O'hhhh + O'vvvv -- 2 Re trhh•o 
(40c) 

L 

Fig. 7. Azimuthal symmetry obtained from the rotation sym- 
metry by adjoining the reflection symmetry in any vertical plane 
(P) containing the axis of rotation symmetry (L) where the linear 
polarization basis is (/i, 0) with/i .1. L and P II 0 .1. L. 

Equations (40a) and (40b) relate the arithmetic 
average of the real parts and the imaginary parts of 
the cross-scattering coetficients, respectively. 
Moreover, (40c) can be expressed simply as (l(fh• + 
f•h)/2)l •) = (l(fhh --f•)/2l•), indicating that the 
average cross-polarized return just corresponds to 
the correlation of the difference between the copo- 
larized scattering elements for a medium with the 
rotation symmetry. Since the reciprocal relation has 
not been imposed on the derivation in this section 
so far, the results in (34)-(38) are applicable to a 
nonreciprocal medium. Rotation symmetry and 
nonreciprocity are observed in a gyrotropic random 
medium such as the Earth's ionosphere, which is a 
plasma magnetized by the geomagnetic field, con- 
taining rodlike density irregularities along the field- 
aligned direction. 

When the medium is reciprocal, the reciprocity 
relation fh• = f•h applies. With the use of the 
reciprocity relation, (40c) becomes 

trh•,h•, = (trhhhh -- trhhv•,)/2 (41a) 

or 

e = (1 - p)/2 (4lb) 

where rrhhvv and p are real, implicitly. The covari- 
ance matrix for a reciprocal medium with the rota- 
tion symmetry takes on the simple form of 

O'hhhh i Im O'hhhv Re O'hhvv 

C = - i Im trhhhv O'hvhv i Im trhhhv (42a) 
Re O'hhvv --i Im O'hhhv O'hhhh 

1 i Im/•(e) m Re p 
C = • -i Im/•(e) m e i Im/•(e) m 

Re p -i Im/•(e) m 1 

(42b) 
In this case the covariance matrix contains at most 

three independent parameters. A chiral medium 
made by embedding helixes in an isotropic back- 
ground can be considered as having both reciproc- 
ity and rotation symmetry. 

5. AZIMUTHAL SYMMETRY 

Azimuthal symmetry is studied in this section to 
reveal its effects on the polarimetric backscattering 
coefficients. The azimuthal symmetry group, de- 
noted by •oov, can be obtained from the rotation 
group •oo by adjoining the reflection rr• in any 
vertical plane (P) passing through the axis of rota- 
tion symmetry (L) as depicted in Figure 7, where 
the polarization basis is (fi, •) with fi _L L and P II • 
_L L. Thus azimuthal synm•etry has the character- 
istics of both the reflection and the rotation symme- 
tries. The combination of the results from the two 

symmetries, discussed in sections 3 and 4, provides 
a set of equations relating the scattering coetficients 
of a medium with azimuthal symmetry. These equa- 
tions will be used to test the calculations for the 

volume scattering from layer random media under 
the first-order distorted Born approximation and for 
the rough surface scattering under the first-order 
small perturbation method. 
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As indicated, a configuration with the azimuthal 
symmetry also has reflection symmetry. The scat- 
tering coefficients craaav, •raava, •ravaa, •ravvv, •rvaaa, 
cr•,avv, •rvvav, and •rvvva are therefore zero in all 
azimuthal directions of observation. Moreover, az- 
imuthal symmetry imposes further constraints on 
the scattering coefficients due to the rotation sym- 
metry as specified in (36), (37), and (38). The 
covariance matrix, which has at most three inde- 
pendent parameters, of a scattering medium with 
the azimuthal symmetry can thus be written as 

1 0 p 1 0 1 -•2e 
C=•r • (1-0P)/2 01 =•r 0 2 e (45b) 1- e 0 1 

The equations for the scattering coefficients hold 
for all scattering mechanisms in the azimuthally 
symmetrical medium. Results calculated from the- 
oretical models have to be consistent with the 

above conditions imposed on the scattering coeffi- 
cients due to azimuthal symmetry. As a verifica- 

C • 

C • 

O'h•hh 0 O'hvhv 

O'hhhh • O'hvhv • Re O'hhvv 

Re o'•vv 0 

0 Re O'hhvv 1 
O'hhhh -- O'hvhv -- Re O'hhvv • O'hvhv 

0 o'nnnn 

o'nnnn 0 0 
0 O'hvhv Re O'hvvh 
0 Re O'hw h O'hvhv 

O'hhhh • O'hvhv -- Re O'hvvh 0 0 

O'hhhh -- O'hvhv -- Re O'hvvh 
o 

o 

O'hhhh 

(43a) 

(43b) 

If a medium with the azimuthal symmetry is also 
reciprocal, O'hhhv = O'hvvv = 0 or/3 = • = O, and the 
nonzero scattering coefficients are constrained by 

O'hhhh = O'vvvv , Im O'hh w = 0, 

O'nvnv = (o'nnnn + O'vvvv - 2 Re o'nnvv)/4 
(44a) 

or 

ß y = 1, Imp = 0, e = (1 + 'y - 2 Re p)/4 (44b) 

where (44b) is the normalized form of (44a). Note that 
O'hhhv '- O'hvvv = 0 or fi = • = 0 is not the necessary 
condition of (44) which is derived independently from 
a different symmetry group. The three-by-three cova- 
riance matrix (9) of the reciprocal medium with the 
azimuthal symmetry has at most two independent 
parameters and can be written simply as 

O'hhhh 0 O'hhvv 
C = 0 (O'hhhh -- O'hhvv)/2 0 

O'hhvv 0 O'hhhh 

O'h•hh 0 O'hhhh -- 20'hvhv O'hvhv 0 

L O'hhhh -- 20'hvhv 0 O'hhhh 
(45a) 

tion, volume scattering from layer random medium 
and rough surface scattering from a medium inter- 
face are considered here. For volume scattering, 
the wave theory is used to construct models 
[Nghiem, 1991] for layer inhomogeneous media, 
and the backscattering coefficients are calculated 
under the first-order distorted Born approximation 
with effective permittivities derived from the strong 
fluctuation theory. Figure 8a is the scattering con- 
figuration similar to the volume scattering case in 
section 3 except that the anisotropic scattering layer 
includes ellipsoidal scatterers. These scatterers are 
preferentially oriented in the vertical direction and 
randomly oriented in the azimuthal directions. A 
three-dimensional correlation function with correla- 

tion lengths lx, = 0.1 mm, ly, = 0.3 mm, and I z, = 
1.0 mm is used to describe the ellipsoidal scatterers. 
The calculations show that/3 = • = 0 for all incident 
and azimuthal angles as required by the symmetry. 
For incident angles up to 65 ø, Figure 8b compares 
the ratio e calculated directly from the model with 
those calculated from 

el = (1 - pl)/2 (46a) 
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%H•,' -- (3.64 + i 0.075)eo 
%H,' -- (4.89+ i 1.118) •o 
f•, -- 3t,, -.3turn t,,- lrnrn 

- (60.0 + i 40.0)o, 

z--0m 

z -- -2.0 rn 

-lO 

-15 

-2o 

(b) 

calculated (1) 
calculated (2) 
from model 

0 10 20 30 40 50 60 

Incident Angle (degrees) 

Fig. 8. (a) Scattering configuration for a layer of vertical 
ellipsoids with random azimuthal orientation. (b) Comparison of 
the ratio e calculated directly from the model with el (1) and e2 
(2) calculated from (46) as a function of incident angle Ooi. 

e2 = [ 1 + 7 - 2 Re p('y) '/21/4 (46b) 

based on p and 7 from the model. It is obvious that 
e 2 reduces to el with 7 = 1 and Imp = 0. At normal 
incidence, where the configuration has the azimuthal 
symmetry, the results exactly coincide; that is, e = el 
= e 2. As the incident angle increases, the observation 
direction tums away from the axis of symmetry, and 
the results deviate since the layer boundary and the 
vertical orientation of the scatterers are not azimuth- 

ally symmetrical at oblique incident angles. In this 
case, O'hhhv = O'hv w = 0 are still valid since the 
condition is the reflection symmetry and the azi- 
muthal symmetry is thus an overrequirement. 

Consider another case of scattering configuration 
in Figure 9a, where the lower medium contains 
randomly oriented spheroidal scatterers [Nghiem, 
1991]. The host medium has a permittivity of eb = 

k-o 

Randomly Oriented Spheroids 

œ•,, - .25 mm œ•, - .5 mm 

eef f -- (2.92 + i0.00177)eo 

z--0m 

-lO 

-15 

-2o 

-25 

-3o 

(b) 

; e calculated (1) / 
& e calculated (2) •/ 

0 10 20 30 40 50 60 

Incident Angle (degrees) 

Fig. 9. (a) Scattering configuration for a half-space of a 
medium containing randomly oriented prolate spheroidal scat- 
terers. (b) Comparison of the ratio e calculated directly from the 
model with e I (1) and e2 (2) calculated from (46) as a function of 
incident angle Ooi. 

(3.2 + i0.002)e0, and the scatterer permittivity is es 
= e0. The scatterers are described by an exponen- 
tial correlation function of spheroidal form with 
correlation lengths l•, = 0.25 mm and I z, = 0.5 mm. 
The polarimetric scattering coefficients at $ GHz 
are also calculated under the first-order distorted 

Born approximation with an isotropic effective per- 
mittivity eca= (2.92 + il.77 x 10-3)e0 obtained 
from SFT for 10% fractional volume of the scatter- 

ers. The results for ratio e are plotted in Figure 9b, 
which also shows that e ratios are the same at 

normal incidence due to the azimuthal symmetry. 
Similar to the last case, the new results are different 
at larger incident angles since the azimuthal sym- 
metry is destroyed. While e 1 still stays away from e, 
el is closer to e compared to the case of the 
configuration in Figure 8. The reason is that the 
azimuthal asymmetry of the layer-embedding ran- 
domly oriented spheroidal scatterers is only caused 
by the boundary effects. 
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For a slightly rough surface the backscatters for h 
and v polarizations are completely correlated under 
the first-order small perturbation approximation. In 
this case the covariance matrix for the rough inter- 
face has the form 

1 0 ('y) •/21 

C=tr0 0 0•1 (•,) v2 0 
(47) 

where tr = trnh, 3/ = trvv/trnh, and the analytical 
solutions for O'hh and trvv are given by Tsang et al. 
[1985]. At normal incidence, 3/= 1, and the covari- 
ance matrix (47) of the scattering from the rough 
surface trivially satisfies (45b) due to the azimuthal 
symmetry. At larger incident angles, 3/% 1, and (47) 
is different from (45b) since the scattering config- 
uration departs from the symmetry. As shown, the 
theoretical models for the volume and the surface 

scatterings under consideration consistently follow 
the conditions imposed by the azimuthal symmetry 
on the backscattering coefficients. 

6. CENTRICAL SYMMETRY 

This section discusses the polarimetric backscat- 
tering coefficients from scatterers or media with 
centrical symmetry about a point. Scattering from 
leaves with random orientation can be considered 

as an example of this symmetry. Centrical symme- 
try also has reflection symmetry about any plane 
containing the point of symmetry and azimuthal 
symmetry about any axis passing through the sym- 
metry point. Thus centrical symmetry can be con- 
sidered as azimuthal symmetry with the axis con- 
taining the center point and rotated in three 
dimensions. Let the linear polarization basis (h, b) 
be perpendicular to the observation direction 
toward the point of the centrical symmetry O as 
depicted in Figure 10. In this polarization basis, all 
symmetry conditions derived in this paper are 
therefore valid at all azimuthal and incident angles. 
These conditions will be used to verify the symme- 
try consistency in volume and surface scattering 
models. 

For volume scattering the backscattering coeffi- 
cients from a layer of randomly oriented scatterers 
with spheroidal shapes are studied. The scattering 
configuration is illustrated in Figure 1 l a, where the 
upper half-space is air, the middle layer is com- 
posed of an air background with the spheroidal 

o' k 

Fig. 10. Centrical symmetry about point 0 to which the unit 
incident wave vector • of the linear polarization basis (/•, b) is 
directed. 

scatterers, and the underlying medium is homoge- 
neous. The diffuse boundary condition between the 
air and the scattering layer is represented by the 
dashed line in Figure 11a. The model has been 
developed for applications in remote sensing of 
vegetation canopies [Nghiem et al., 1991]. The 
frequency under consideration is 5 GHz for a wave 
incident at a variable angle Ooi. The scatterers have 
permittivity es = (30.0 + i10.0)e0 and occupy a 
fractional volume of 0.5%. The underlying medium 
has a homogeneous permittivity of e2 = (9.0 + 
il.5)e0. The thickness of the scattering layer is 
taken to be 5 m so that the wave is highly attenuated 
before the lower interface is reached. The polari- 
metric scattering coefficients are calculated from 
the model under the first-order Born approxima- 
tion. Figure 1 lb shows the conventional backscat- 
tering coefficients •rnn, •rvv, and •rnv (where •rnn = 
•rvv), which drop more than 4 dB over the range of 
incident angles. Figure 11 c graphs the results for the 
correlation coefficient p which is insensitive to the 
incident angles. Figure 1 l d reports the results for 
the e ratios obtained from the model and from the 

calculations with (46). Rather, corresponding to the 
behavior of p, the e ratios remain unchanged as the 
incident angles increases. Moreover, the results 
coincide at all incident angles as observed from the 
plots. This is true for oblique incidence because the 
scatterers are randomly oriented and the boundary 
effects are insignificant for the diffuse upper inter- 
face and the unreachable lower surface. The centri- 

cal symmetry is therefore preserved virtually for all 
incident direction from the upper half-space. It 
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Fig. l l. (a) Scattering configuration for a layer of randomly oriented prolate spheroidal scatterers; the dashed 
line represents the diffuse boundary between the air and the scattering layer. (b) Conventional backscattering 
coefficients rrhh, rr•,•,, and O'h•,. (c) Correlation coefficient p. (d) Results for e ratios obtained from model and from 
(46). 

should be noted that the main difference from the 

configuration in Figure 9 is the boundary condition 
at the interface between the upper half-space and 
the scattering medium. Also, from the model the 
results for/3 and s • are zero. Thus the backscattering 
from the randomly oriented scatterers with diffuse 
boundary follows the conditions in (44) at arbitrary 
incident angles due to the centrical symmetry. 

For backscattering from the rough surface the 
geometrical optics approximation corresponds to 
the assumption of specular point return, and the 
backscattering for h and v polarizations is equal and 
completely correlated. The covariance matrix de- 
scribing the scattering from the rough surface under 
the geometric optics condition becomes 

(48) 

1 o 1 

oo, C= ø' O1 0 

where rr = ffhh = ffvv whose analytical form is given 
by Tsang et al. [1985]. The covariance matrix (48) 
obeys the symmetry conditions in (44) in a trivial 
manner. Even though there is a boundary in this 
case of rough surface scattering, the specular points 
responsible for the scattering from the surface are 
centrically symmetrical, as observed at any incident 
angle under the assumption of geometrical optics. 
As shown, the scattering coefficients calculated 
from the theoretical models for the volume and the 

surface scatterings follow the conditions imposed 
by the symmetry. 

7. APPLICATIONS 

7.1. Medium structures 

The behavior of the polarimetric backscattering 
coefficients based on the symmetry properties can 
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be used as a reference to study the structure of the 
scatterers in geophysical media. Different geomet- 
rical distribution of nonspherical scatterers can be 
identified and classified by comparing the scattering 
coefficients with the corresponding symmetry cal- 
culations. 

As discussed, water waves on the ocean surface 
have reflection symmetry with respect to the verti- 
cal plane parallel to the wind direction, and the 
corresponding covariance matrix contains the zero- 
scattering coefficients as specified by (18). These 
scattering coefficients become nonzero and vary 
periodically as the azimuthal angle turns around and 
return to the zero value again when the azimuthal 
direction coincides with the wind direction. For sea 

ice the first-year ice type has a preferential vertical 
structure observed in the orientation of brine inclu- 

sions [Weeks and Ackley, 1982], while scatterers in 
multiyear ice are more randomly distributed. Com- 
parisons of the measured value for the polarimetric 
returns from sea ice with the symmetry calculations 
can reveal the structural information which helps 
identify the ice types. Agricultural plants are usu- 
ally grown in rows for many species of vegetables. 
This row structure for vegetation has reflection 
symmetry about vertical planes perpendicular and 
parallel to the row direction, where the covariance 
matrix has the form of (20). Azimuthal symmetry is 
often observed in forests whose covariance matrix 

can assume the form of (45). For orientations of 
vegetation elements the distributions have been 
formulated to describe various structures including 
spherical, uniform, planophile, plagiothile, erecto- 
phile, and extremophile distributions which can be 
represented simply by a beta probability density 
function [Goel and Strebel, 1984]. Foliage having 
leaves with spherical orientation distribution can 
have centrical symmetry which requires the polari- 
metric scattering coefficients to follow (44) at arbi- 
trary incident angles. When the frequency is low 
such that the electromagnetic wave can penetrate 
through the foliage canopy, the centrical symmetry 
can be destroyed by the horizontal branches or the 
vertical tree trunks. In this case the preferential 
orientations reduce the vegetation medium to azi- 
muthal symmetry at normal incidence and to reflec- 
tion symmetry at oblique incidence, and the cova- 
dance matrix will behave accordingly. 

From many experimental campaigns, fully pola- 
rimetric data over various geophysical media such 
as snow, sea ice, vegetation, soil, lava, or ocean have 

been collected. The available results of an investiga- 
tion for structural information from extensive data 

sets obtained by the Jet Propulsion Laboratory syn- 
thetic aperture radar are reported by S. V. Nghiem, et 
al. (Jet Propulsion Laboratory, "Polarimetric remote 
sensing of geophysical medium structures in geophys- 
ical media," unpublished manuscript, 1992). This 
study provides a selection of distributed targets from 
which scattering coefficients are well behaved in ac- 
cordance with the symmetry conditions. For instance, 
a tropical rain forest with a dense foliage canopy can 
naturally manifest centrical symmetry. 

7.2. Environmental effects 

Environmental conditions can change the polari- 
metric signatures from geophysical media through 
their intervention in the path of the probing wave or 
through the restructuring of the media themselves. 
In remote sensing from space the Earth's iono- 
sphere may modify the signatures under some cir- 
cumstances. Near the equatorial anomalies or dur- 
ing a period of high solar activity, the ionospheric 
density irregularities can introduce signature distor- 
tions which destroy the symmetry behavior of the 
scattering coefficients froln symmetrical media. For 
example, the covariance matrix of an azimuthally 
symmetrical medium takes on the form (43) instead 
of (45) after the field-aligned transionspheric prop- 
agation. Thick snow cover on first-year ice can make 
the polarimetric signature become more isotropic 
[Nghiem, 1991], and the covariance matrix ap- 
proaches the case of centrical symmetry. Rain can 
cause anisotropic effects due to the nonspherical 
shape and the preferential alignment of the rain drops. 
When it rains over a forest canopy with the centrical 
symmetry, the covariance matrix in this case can be 
different from (45). These effects from the environ- 
mental conditions can therefore be recognized by 
inspecting the covariance matrices of the geophysical 
media having the symmetry properties. 

In many instances, the environmental conditions 
can change the structure of the media. A sea current 
can align c axes in sea ice [Weeks and Ackley, 1982] 
which becomes biaxial, and it has reflection sym- 
metry rather than azimuthal as in sea ice with 
random orientation of the c axes in horizontal 

directions. Wind bends the canopy on a wheat field 
and transforms the azimuthal symmetry into reflec- 
tion symmetry. Leaf inclination also depends on 
environmental factors such as rain and plant stress. 
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In some species of grass and agricultural plants 
(herbaceous vegetation) the leaf inclination varies 
diurnally [Le Toan et al., 1990], resulting in the 
variation of the orientation distribution and the 

corresponding covariance matrix. The azimuthal 
asymmetry of vegetation can also be attributed to 
physiological behavior such as heliotropism which 
may render the reflection symmetry in the heliotro- 
pic canopy. Comparison of the covariance matrices 
of these geophysical media with the polarimetric 
signatures under normal conditions can provide 
information pertaining to the environmental effects. 

only on the knowledge of symmetries and not 
restricted by types of scattering media or scattering 
mechanisms. The polarimetric calibration for cross- 
talk and channel imbalance removals done with the 

new methods renders a possibility of calibrating a 
polarimetric radar without the deployment of man- 
made calibration targets which is usually difficult in 
harsh environments, such as sea ice and ocean 
water. Moreover, the new calibration algorithms 
can be applied to polarimetric remote sensing from 
space as a result of the large coverage of natural 
distributed targets such as tropical rain forests. 

7.3. Polarimetric calibration 8. SUMMARY 

Correct interpretation of polarimetric data re- 
quires calibration of the polarimetric radar, in other 
words, to estimate the polarization distortion matri- 
ces of both transmitting and receiving channels. In 
this regard, it has been a standard practice to deploy 
man-made targets such as corner reflectors or ac- 
tive transponders in the scene to be imaged. How- 
ever, when the man-made targets are not available, 
the symmetry that exists in many natural distrib- 
uted targets will be a very useful tool for the 
polarimetric calibration. 

With the applications of symmetry, algorithms 
are developed to remove the cross talk and channel 
imbalance in a step-by-step process using the re- 
sponse from natural distributed targets so that the 
calibration can be carried out as much as possible 
with the available degree of symmetry (S. H. Yueh, 
et al., Jet Propulsion Laboratory, "External cali- 
bration of polarimetic radars using distributed tar- 
get," unpublished manuscript, 1992). In general, a 
polarimetric radar is nonreciprocal and is described 
by six complex parameters. On the basis of the 
reciprocity which is usually satisfied for natural 
distributed targets, the polarimetric radar is made 
reciprocal by using an equivalent point-target re- 
sponse derived by Yueh et al. [1991]. The number of 
unknown parameters is therefore reduced from six 
to three, including one for channel imbalance and 
two for cross talk. When a distributed target with 
reflection symmetry is available in the imaged 
scene, the two complex cross-talk parameters are 
calculated by means of (18). The residual error is 
the channel imbalance which can be removed by 
(36a) for the phase and (38) for the magnitude if a 
target with rotation symmetry is also available. It 
should be noted that these conditions are based 

In this paper the relations among polarimetric 
backscattering coefficients have been derived from 
the symmetry properties of the media. The symme- 
tries under consideration are due to reflection, 
rotation, azimuthal, and centrical symmetry 
groups. For reflection symmetry the scattering co- 
efficients correlating the copolarized and the cross- 
polarized elements in the scattering matrix are 
proved to be zero. For the rotation symmetry the 
constraints imposed on the scattering coefficients 
are derived, and the 16 independent parameters in 
the covariance matrix are reduced to six for nonre- 

ciprocal media and to three for reciprocal media. 
The azimuthal symmetry group is the adjoint be- 
tween the reflection and the rotation groups giving 
rise to a set of equations restricting the scattering 
coefficients of most geophysical media at normal 
incidence. Centrical symmetry generalizes the char- 
acteristics of the azimuthal symmetry to all incident 
angles including the oblique cases. The derivations 
in this paper are based only on the symmetry proper- 
ties of the media, and thus the results are valid for all 
scattering mechanisms, including volume scattering, 
surface scattering, and their interactions. Results cal- 
culated from theoretical models for media with sym- 
metrical configurations have been shown to obey the 
symmetry conditions on the scattering coefficients. 
For volume scattering, models based on the wave 
theory under the first-order distorted Born approxi- 
mation for spheroidal and ellipsoidal scatterers with 
different orientation distributions have been investi- 

gated. For surface scattering, randomly perturbed 
quasi-periodic rough surface and rough interfaces 
under the first-order small perturbation method and 
the geometrical optics have been considered. The 
equations for the scattering coefficients imposed by 
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the symmetries are applicable to gyrotropic, chiral, 
anisotropic, and isotropic scattering media which en- 
compass all the media encountered in geophysical 
remote sensing. On the basis of symmetry properties, 
medium structures for water waves, sea ice, and 
vegetation and environmental effects, including the 
ionosphere, snow cover, rain, wind, and sea current 
are discussed. From the symmetry results in this 
paper, new methods are proposed for the complete 
relative calibration of polarimetric radars with only 
the use of natural distributed targets. 

APPENDIX 

In this appendix the results are presented for the 
complete set of scattering coefficients, constituting 
the full covariance matrix in the rotated linear 

polarization basis: 

O'hhhh = q-O'hhhh COS 4 • + O'hhhv COS 3 • sin a 

q- O'hhvh COS 30• sin a + O'hhvv COS 20• sin 2 a 

q- O'hvhh COS 3 o• sin a + O'hvhv COS 2 o• sin 2 a 

q- O'hvvh COS 2 o• sin 2 a + O'hvvv COS O• sin 3 a 

+ O'vhhh COS 3 c• sin ot + O'vhhv COS 2 c• sin 2 a 

q- O'vhvh COS 2 o• sin 2 ot + O'vhvv COS O• sin 3 a 

q- O'vvhh COS 20• sin 2 ot + O'wh v COS O• sin 3 a 

+ rrvvvn cos a sin 3 ot + rrvvvv sin 4 a (A1) 

O'hhhv -- --O'hhhh COS 3 o• sin a + O'hhhv COS 4 o• 

-- O'hhvh COS 2 c• sin 2 ot + O'hhvv COS 3 c• sin a 

- O'hvhh COS 20• sin 2 ot + O'hvhv COS 30• sin a 

-- O'hvvh COS O• sin 3 a + O'hvvv COS 20• sin 2 a 

-- O'vhhh COS 20• sin 2 a + O'vhhv COS 30• sin a 

-- O'vhvh COS O• sin 3 a + O'vhvv COS 20• sin 2 a 

-- O'vvhh COS O• sin 3 a + O'vvhv COS 20• sin 2 a 

-- O'vvvh sin 4 a + rrvvvv cos a sin 3 a (A2) 

O'hhvh = --O'hhhh COS 3 c• sin ot- O'hhhv COS 2 c• sin 2 c• 

q- O'hhvh COS 4 o• q- O'hhvv COS 3 o• sin a 

-- O'hvhh COS 2 c• sin 2 ot- O'hvhv COS c• sin 3 a 

q- O'hvvh COS 3 o• sin ot + O'hvvv COS 20• sin 2 a 

-- O'vhhh COS 2 c• sin 2 ot- O'vhhv COS c• sin 3 a 

q- O'vhvh COS 3 o• sin a + O'vhvv COS 20• sin 2 a 

-- O'vvhh COS O• sin 3 ot- O'wh v sin 4 a 

q- rrvw h cos 2 c• sin 2 ot + rrv• v cos a sin 3 a 

O'hhvv q-O'hhhh COS 2 c• sin 2 ot- O'hhhv COS 3 c• sin .a 

- O'hhvh COS 3 o• sin ot + O'hhvv COS 40• 

q- O'hvhh COS c• sin 3 ot- O'hvhv COS 2 c• sin 2 a 

- O'hvvh COS 2 o• sin 2 a + O'hvvv COS 30• sin a 

q- O'vhhh COS c• sin 3 ot- O'vhhv COS 2 c• sin 2 a 

O'vhvh COS 2 o• sin 2 ot + O'vhvv COS 30• sin a 

q- O'vvhh sin 4 a - O'vvhv COS o• sin 3 a 

-- O'vvvh COS O• sin 3 ot + Crvv w COS 20• sin 2 ce 

O'hvhv = q-O'hhhh COS 2 c• sin 2 ot- O'hhhv COS 3 c• sin a 

q- O'hhvh COS c• sin 3 ot- O'hhvv COS 2 c• sin 2 a 

- O'hvhh COS 3 o• sin ot + O'hvhv COS 40• 

O'hvvh COS 2 o• sin 2 a + O'hvvv COS 30• sin a 

q- O'vhhh COS c• sin 3 ot- O'vhhv COS 2 c• sin 2 a 

q- rrvhvh sin 4 c• - rrvhvv COS cg sin 3 c• 

rrvvhh COS 2 cg sin 2 c• + rrvvhv COS 3 cg sin a 

-- O'vvvh COS O• sin 3 a + tryre, v COS 20• sin 2 a 

O'hvvh = q-O'hhhh COS 2 c• sin 2 a + O'hhhv COS c• sin 3 a 

- O'hhvh COS 3 o• sin a - O'hhvv cos 2 o• sin 2 a 

- O'hvhh COS 3 c• sin ot- O'hvhv cos 2 c• sin 2 a 

q- O'hvvh COS 4 o• q- O'hvvv COS 3 o• sin a 

q- rrvhhh COS cg sin 3 c• + rrvhhv sin 4 c• 

-- O'vhvh COS 20• sin 2 ot- O'vhvv COS o• sin 3 a 

-- O'vvhh COS 2 c• sin 2 ot- O'wh v COS c• sin 3 a 

q- rrvvvh COS 3 cg sin a + Cry w COS 2 Cg sin 2 a 

(A3) 

(A4) 

(A5) 

(A6) 
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O'hvvv = --O'hhhh COS cg sin 3 cz + O'hhhv COS 2 cg sin 2 cz q- O'vhvh COS 2 cg sin 2 c• - O'vhvv COS 3 cg sin a 

+ O'hhvh COS 2 cg sin 2 c• - O'hhvv COS 3 cg sin a + O'vvhh COS 2 sin 2 c• - O'vvhv COS 3 cg sin a 

+ •rhvhh COS 2 a sin 2 a -- •rhvhv ½OS3 cg sin a - O'vvvh ½OS 3 cg sin a + •rvvvv cos 4 a (A10) 

• O'hvvh COS 3 cg sin a + O'hvvv COS 4 cg • O'vhhh sin 4 a 

q- O'vhhv COS cg sin 3 a + O'vhvh COS cg sin 3 a 

• O'vhvv COS 2 cg sin 2 a + O'vvhh COS cg sin 3 a 

-- O'vvhv COS 2 cg sin 2 c• - O'vvvh COS 2 cg sin 2 c• 

q- O'vvvv COS 3 Cg sin a (A7) 

! O'vhvh -- q-O'hhhh COS 2 cg sin 2 cz + O'hhhv COS cg sin 3 cz 

-- O'hhvh COS 3 cg sin a - O'hhvv COS 2 cg sin 2 a 

q- O'hvhh COS cg sin 3 a + O'hvhv sin 4 a 

• O'hvvh COS 2 cg sin 2 c• - O'hvvv COS cg sin 3 c• 

• O'vhhh COS 3 cg sin a - O'vhhv COS 2 cg sin 2 a 

q- O'vhvh COS 4 cg q- O'vhvv COS 3 cg sin a 

-- O'vvhh COS 2 sin 2 c• - O'vvhv COS cg sin 3 c• 

(A8) + O'vvvh COS 3 cg sin a + o'vvvv C0S2 Cg sin 2 c• 

! O'vhvv = --O'hhhh COS cg sin 3 a + O'hhhv COS 2 cg sin 2 a 

+ O'hhvh COS 2 cg sin 2 a - O'hhvv COS 3 cg sin a 

-- O'hvhh sin 4 a + O'hvhv COS cg sin 3 a 

+ O'hvvh COS cg sin 3 a - O'hvvv COS 2 cg sin 2 a 

+ O'vhhh COS 2 cg sin 2 a - O'vhhv COS 3 cg sin a 

-- O'vhvh COS 3 cg sin a + O'vhvv COS 4 cg 

+ O'vvhh COS cg sin 3 a - O'vvhv COS 2 cg sin 2 a 

--O'vvvh COS 2 a sin 2 a + O'vvvv COS3 a sin a (A9) 

O'vvvv = +O'hhhh sin 4 c• O'hhhv cos c• sin 3 c• 

-- O'hhvh COS cg sin 3 c• + O'hhvv COS 2 cg sin 2 c• 

-- O'hvhh COS cg sin 3 c• + O'hvhv COS 2 cg sin 2 c• 

+ O'hvvh COS 2 cg sin 2 c• - O'hvvv COS 3 cg sin a 

-- O'vhhh COS cg sin 3 c• + O'vhhv COS 2 cg sin 2 c• 

O'hvhh O'•h v , ' = O'•vh , O'vhhv O'hvv h = •rvhhh = (A11) 

! 

O'vvhh = O'•vv , • • , = O'hvvv, -- O' •tvv O'vvhv O'vvvh (A12) 
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